U–Pb zircon geochronology and implications of Cambrian plutonism in the Ellsworth belt, Maine

Author:

Pollock Jeffrey C.1,Reusch Douglas N.2,Dunning Gregory R.3

Affiliation:

1. Department of Earth and Environmental Sciences, Mount Royal University, Calgary, AB T3E 6K6, Canada.

2. Department of Geology, University of Maine at Farmington, Farmington, ME 04938, USA.

3. Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada.

Abstract

The Ellsworth belt is one of several fault-bounded blocks exposed along the southeastern coast of Maine that formed within Ganderia. New ID-TIMS U–Pb geochronological data integrated with field relationships provide additional insights into the timing of magmatism and deformation in the Ellsworth belt. The deformed Lamoine Granite was selected for U–Pb zircon analysis to: (i) establish the protolith age; (ii) provide direct temporal constraints on regional low-grade metamorphism and deformation; and (iii) elucidate relationships between the Ellsworth belt and coeval rocks elsewhere in the Appalachian orogen. The Lamoine Granite was emplaced within the Ellsworth Schist at 492 ± 1.7 Ma; this is the first unequivocal evidence for a Furongian magmatic event in the Ellsworth belt. The schistosity in the Lamoine Granite is parallel to the main fabric of the host Ellsworth Schist and provides a maximum estimate for timing of the regional metamorphic overprint. Widespread deformation in the Ellsworth belt where kinematic indicators indicate a top-to-northwest sense of shear is attributed to thrusting during which progressive horizontal shortening, caused crustal thickening and peak greenschist facies metamorphism. The Cambrian U–Pb age permits correlation of the Lamoine Granite with the Cameron Road Granite in the Annidale belt of New Brunswick where subduction-related magmas intruded the Penobscot arc–back-arc and were subsequently deformed during the Penobscot Orogeny.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3