Affiliation:
1. School of Earth & Ocean Sciences, University of Victoria, Victoria, BC, Canada
2. Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
Abstract
On the southwest cape of the Congo craton, a subtropical carbonate bank the size of Greenland was heavily glaciated during two Cryogenian panglacial episodes spaced 10–20 Myr apart. In NW Namibia, the bank underwent crustal stretching with resultant Aegean Sea-type topography during the older and longer Sturtian glaciation (717–661 Ma). This is indicated by angular discordance between glacial and preglacial strata and diamictites sourced from all older units, including crystalline basement. In contrast, the bank was flat-topped and underwent broad thermal subsidence during Marinoan glaciation (646 ± 5–635 Ma), attested by stratal parallellism and diamictites sourced from ≤100 m stratigraphic depth. However, ≥2.0 km of relief existed on the Marinoan continental slope, where most glacial erosion and accumulation occurred. The average rates of Marinoan erosion (2.55–6.80 m/Myr, n = 190) and accumulation (2.65–7.07 m/Myr, n = 211) are indistinguishable, implying that the location in a continental promontory did not bias erosion over accumulation. The average accumulation rates for the Sturtian and Marinoan, scaled for different averaging times, including Marinoan uncertainty, are 3.95–4.93 m/Myr ( n = 183) and 2.65–7.07 m/Myr ( n = 190), respectively, suggesting that a Marinoan glacioeustatic coastal escarpment substituted for rift-related Sturtian basin-and-range topography. These slow rates, comparable to long-term pre-Quaternary accumulation rates on existing abyssal plains, reconcile glacial sedimentology with the feeble hydrologic cycle of snowball Earth.
Publisher
Canadian Science Publishing
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献