Permafrost thaw sensitivity prediction using surficial geology, topography, and remote-sensing imagery: a data-driven neural network approach

Author:

Oldenborger Greg A.1,Short Naomi2,LeBlanc Anne-Marie1

Affiliation:

1. Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada.

2. Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, Ontario, Canada.

Abstract

Seasonal or degradational thaw subsidence of permafrost terrain affects the landscape, hydrology, and sustainability of permafrost as an engineering substrate. We perform permafrost thaw sensitivity prediction via supervised classification of a feature set consisting of geological, topographic, and multispectral variables over continuous permafrost near Rankin Inlet, Nunavut, Canada. We build a reference classification of thaw sensitivity using process-based categorization of seasonal subsidence as measured from differential interferometric synthetic aperture radar whereby categories of thaw sensitivity are reflective of ground ice conditions. Classification is performed using a neural network trained on both dispersed and parcel-based reference data. For Low, Medium, High, and Very High thaw sensitivity categories, generalized classification accuracy is 70.8% for 20.6 km2 of dispersed training data. In all cases, the majority classes of Low and Medium thaw sensitivity are predicted with higher accuracy and more certainty, while the minority classes of High and Very High thaw sensitivity are underpredicted. Minority classes can be combined to improve accuracy at the expense of a reduced level of discrimination. The two-class problem can be classified with an accuracy of 81.8%, thereby effectively distinguishing between stable and unstable ground. The method is applicable to similar Low-Arctic permafrost terrain with geological and topographical controls on thaw sensitivity. However, generalized accuracy is reduced for parcel-based training, indicating that reference samples are not totally representative for inference beyond the parcel, and any deployment of the network to other geographical regions would benefit from full or partial retraining with local data.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3