Affiliation:
1. Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada.
2. Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, Ontario, Canada.
Abstract
Seasonal or degradational thaw subsidence of permafrost terrain affects the landscape, hydrology, and sustainability of permafrost as an engineering substrate. We perform permafrost thaw sensitivity prediction via supervised classification of a feature set consisting of geological, topographic, and multispectral variables over continuous permafrost near Rankin Inlet, Nunavut, Canada. We build a reference classification of thaw sensitivity using process-based categorization of seasonal subsidence as measured from differential interferometric synthetic aperture radar whereby categories of thaw sensitivity are reflective of ground ice conditions. Classification is performed using a neural network trained on both dispersed and parcel-based reference data. For Low, Medium, High, and Very High thaw sensitivity categories, generalized classification accuracy is 70.8% for 20.6 km2 of dispersed training data. In all cases, the majority classes of Low and Medium thaw sensitivity are predicted with higher accuracy and more certainty, while the minority classes of High and Very High thaw sensitivity are underpredicted. Minority classes can be combined to improve accuracy at the expense of a reduced level of discrimination. The two-class problem can be classified with an accuracy of 81.8%, thereby effectively distinguishing between stable and unstable ground. The method is applicable to similar Low-Arctic permafrost terrain with geological and topographical controls on thaw sensitivity. However, generalized accuracy is reduced for parcel-based training, indicating that reference samples are not totally representative for inference beyond the parcel, and any deployment of the network to other geographical regions would benefit from full or partial retraining with local data.
Publisher
Canadian Science Publishing
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献