Evaluation of carbon dioxide sequestration via interaction with peridotite and peridotite-hosted groundwaters: an experimental case study with Bay of Islands Ophiolite rocks, western Newfoundland, Canada

Author:

Gill M.J.1ORCID,Poduska K.M.2ORCID,Morrill P.L.1ORCID

Affiliation:

1. Department of Earth Sciences, Memorial University, St. John's, NL, Canada

2. Memorial University, Department of Physics and Physical Oceanography, St. John's, NL, Canada

Abstract

This study measured the CO2 gas flux into various aqueous media (i.e., simulated ultra-basic and basic groundwater, and deionized water) containing ultramafic rock. Basic and ultra-basic waters simulated the aqueous chemistry and ion concentrations of distinct groundwaters found within terrestrial ultramafic bodies. Experiments were performed in a closed chamber in-line with a CO2 analyzer, which measured the gaseous CO2 concentration in the chamber every second. Total inorganic carbon, as well as aqueous species Ca, Mg, and Si were monitored in the reaction fluids. All three fluid types sequestered CO2. The addition of crushed peridotite to deionized water reduced the CO2 concentration in the headspace by 70 ppm (±9 ppm, 1σ, n = 3) and had a calculated CO2 flux of −2.5 × 104 mol/m2min (±9 × 105 mol/m2min, 1σ, n = 3), while the greatest CO2 flux was observed in ultra-basic Ca-rich waters of −1.40 × 103 mol/m2min (±3 × 105 mol/m2min, 1σ, n = 3), which reduced the headspace CO2 concentration by 323 ppm (±4 ppm, 1σ, n = 3). The presence of calcite was detected using FTIR in ultra-basic waters in the presence and absence of ultramafic rock. A carbon mass balance model indicated that solid carbonates were precipitated in the ultra-basic water experiments, converting up to 59% of the CO2 removed from the chamber headspace in 4 h. Extrapolating the data collected in these experiments, it was estimated that at surface conditions, with an adequate residence time, the mass of ultramafic rock in the Bay of Islands Complex in Newfoundland could sequester up to 4 million tonnes of atmospheric CO2.

Funder

NSERC Discovery Grant

NSERC CRD

NALCOR

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3