Origin of gases and waters from a hypersaline, carbonate spring on Anticosti Island, Québec, Canada

Author:

Daoust Pascale1ORCID,Clark Ian D.1,Desrochers André1

Affiliation:

1. Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada

Abstract

Hypersaline spring water (TDS ∼ 85 g/L) and gas are escaping from the top of a calcite travertine mound on Anticosti Island. This mound is located in the Chaloupe River area above the Jupiter Fault which cuts through the Ordovician formations in the subsurface, including the oil and gas-rich Macasty Shale Formation. The Cl content is approximately 3 times that of seawater, but the geochemical profile indicates it to be a Paleozoic basin brine (geogenic He = 2E–7 cc/cc) evaporatively enriched beyond halite saturation (Br:Cl molar ratio = 0.0022 ± 0.00013) that has been diluted by some 73 ± 6% with meteoric waters. Measurable tritium (3.4 TU) indicates this to be a mixture of modern and Holocene recharge. The radioiodine (129I < 10 million atoms/L) is a three-component mixture of geogenic and post-nuclear contributions with low levels in pre-nuclear Holocene recharge. Degassing at the vent (1% to 2% CO2, PCO2 = 0.02 atm, >90% CH4) provokes calcite precipitation and travertine mound formation. Methane comprises a thermo-catalytic component and a biogenic component produced at depth in the organic-rich Macasty Formation by reduction of surface-derived dissolved inorganic carbon (DIC; a14C = 3.5 pMC), producing enriched δ13CDIC values recorded in the travertine. The occurrence of basin-derived brine and gas discharging in association with the surface expression of the Jupiter fault implies that this fault provides a pathway for deep circulation of meteoric waters, likely driven by the relief on the island.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3