Direct evidence of sediment carbonate dissolution in response to bottom-water acidification in the Gulf of St. Lawrence, Canada

Author:

Nesbitt William A.11,Mucci Alfonso11

Affiliation:

1. GEOTOP and Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC H3A OE8, Canada.

Abstract

Over the past century, dissolved oxygen concentrations have decreased and metabolic CO2 has accumulated in the bottom waters of the Gulf of St. Lawrence (GSL) and Lower St. Lawrence Estuary (LSLE). Oxygen depletion has been attributed primarily to changes in ocean circulation in the northwest Atlantic Ocean, as well as an increase in the flux of organic matter at or near the seafloor and its accompanying biological oxygen demand. The accumulation of metabolic CO2 in these waters has led to their progressive acidification and a decrease in pH (0.3–0.4 pH unit) commensurate to the variation expected for global oceanic surface waters by the end of this century, albeit by a different mechanism (anthropogenic CO2 uptake from the atmosphere). The decrease in bottom-water pH of the GSL and LSLE is accompanied by a decrease in the carbonate ion concentration and the saturation state of the waters with respect to both calcite and aragonite (ΩC and ΩA). Although the Laurentian Trough sediments are mostly devoid of modern calcium carbonate fossils, detrital (Ordovician/Silurian) carbonates, eroded from Anticosti Island, accumulate on the seafloor. Evidence of carbonate mineral dissolution in the sediments of the Laurentian Trough is examined and supported by pore-water data and vertical variations of their inorganic carbon content. Historical, solid-phase profile data are used to estimate temporal variations of the sedimentary calcite dissolution rates and document the anthropogenic modification of the sediment record.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. Multiple timescales for neutralization of fossil fuel CO2

2. Dynamics of fossil fuel CO2neutralization by marine CaCO3

3. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

4. The changing carbon cycle of the coastal ocean

5. Berner, E., and Berner, R. 1996. Global Environment Water, Air, and Geochemical Cycles. Prentice-Hall, Inc., Englewood Cliffs, N.J.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3