Dynamics of a fluid core with inward growing boundaries

Author:

Schloessin H. H.,Jacobs J. A.

Abstract

In both physical and mathematical models of the Earth's core it has been difficult, so far, to discuss all the terms in the magneto-hydrodynamic energy equation under one unifying theory and to relate all the physical mechanisms involved in a specific model. The reason for this is mainly the uncertainty about the energy sources, or, when they could be accounted for, with uncertainty about their location. In the following article we deduce and examine a model of the Earth's core which can be regarded as a sequel to theories of the formation of a fluid core in the course of the Earth's thermal evolution.General cooling and pressure-freezing cause the formation of solid phases at the boundaries of the fluid core, leading to a solid inner core (IC) and a lower mantle shell (Bullen's D″ layer) from slow overgrowth at the mantle–core (MC) boundary. For simplicity, the core fluid is assumed to consist of two major phases, one conducive to solid metallic core formation, and the other to crystallization of a lower mantle phase from "solution" in a metal "solvent." The presence of a third, minor constituent, by selective partitioning between phases, acts as a solid phase growth regulator.On the basis of this model the energy available for fluid core motion and thereby for maintenance of the magnetic field, is related directly to the time rate of change of the growth of the solid phases at the IC and MC boundaries. Most of the available energy is gravitational and is associated with density and concentration currents which offset density inhomogeneities caused by selective acceptance and rejection of the fluid core constituents by the two solid phases.A very conservative estimate of the net gain per second in gravitational potential energy resulting from the mass redistribution via density currents and solid phase formation is 2.6 × 1013 W which may become available in different forms. The fraction which is converted into kinetic energy associated with differential circulatory motion around the rotation axis amounts to 3.4 × 1011 W, based on radial interchange with respect to the Earth's centre. The heat liberated as a result of IC solidification is 2.7 × 1011 W, assuming that the metallic phase is mainly iron. Since our ideas of other constituents of the core fluid are less definite we can draw only very general conclusions about the MC boundary. If silicates and oxides are likely candidates, it is possible that in the crystallization of the mantle phase from the core fluid, heat is being absorbed, thus creating a heat sink at the MC boundary. An estimate of the net strain energy associated with compression of IC material by about 1.4% and expansion of MC material by, on the average, 0.4% gives 1.5 × 1011 W.Magnetic polarity reversals might be explained as due to epochs during which the solid phase growth rate which dominates the fluid motion shifts from the IC to the MC boundary and vice versa. Intensity changes might be due to significant variations in the ratio of the radial and horizontal velocity components of the fluid motion.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viscosity of the Outer Core;AGU Reference Shelf;2013-02-19

2. The identity and quantity of the light matter on each side of the Earth's inner core boundary;Physics of the Earth and Planetary Interiors;2010-08

3. TRICRITICAL POINTS AND LIQUID-SOLID CRITICAL LINES;European Women in Mathematics;2009-12

4. Porous Sediments at the Top of Earth's Core?;Science;2001-03-16

5. Rapid Earth Expansion : An Eclectic View;Gondwana Research;1997-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3