Activity changes of three nucleolytic enzymes during the life cycle of Saccharomyces cerevisiae
-
Published:1985-12-01
Issue:12
Volume:31
Page:1095-1102
-
ISSN:0008-4166
-
Container-title:Canadian Journal of Microbiology
-
language:en
-
Short-container-title:Can. J. Microbiol.
Author:
Van Ryk Donald I.,von Tigerstrom Richard G.
Abstract
Conditions were established for the assay of three nucleolytic enzymes: a Mg2+-independent endoribonuclease, a Mg2+-dependent endonuclease, and a Mg2+-dependent 5′-exonuclease in Saccharomyces cerevisiae cell extracts. The changes in the activities of these enzymes were determined throughout the life cycle of the organism. As the cells progressed from the exponential to the stationary growth phase, the specific activities of the Mg2+-independent endoribonuclease and of the Mg2+-dependent 5′-exonuclease increased, whereas the Mg2+-dependent endonuclease decreased. During sporulation the Mg2+-independent endoribonuclease and the Mg2+-dependent 5′-exonuclease increased several-fold over the first 10 h, but, since a similar increase was seen in nonsporulating control cells, the increases did not appear to be related to sporulation. However, the specific activity of the Mg2+-dependent endonuclease showed a sporulation-related increase during the first 3 h of sporulation, with a subsequent decline to very low levels. The specific activity of this enzyme increased again during germination to the levels seen in exponential phase cells. The Mg2+-independent endoribonuclease and the Mg2+-dependent 5′-exonuclease showed little change during germination of the ascospores. The high specific activity of the Mg2+-independent endoribonuclease during periods of nutrient deprivation is in agreement with the proposed role for this enzyme in the degradation of rRNA under these conditions.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献