The hydraulic architecture of roses (Rosa hybrida)

Author:

Darlington Alan B.,Dixon Michael A.

Abstract

The presence of an abscission zone in the stem of greenhouse roses (Rosa hybrida) between the vegetative and reproductive components was verified. This led to a description of the hydraulic architecture of the rose stem. The structural aspects of the xylem conducting system in stem, abscission zone and peduncle were examined to define their relative roles in the delivery of water via the stem to the transpiring plant surfaces and the extent to which their functional capacity may be influenced by environmental variables such as humidity. The stem exhibited a highly developed xylem with many large-diameter tracheary elements. Contrary to this the distal segment of the peduncle was poorly vascularized. The remainder of the peduncle, which included the abscission zone, was a transition between these two extremes. The abscission zone was a site of reduced hydraulic conductance that was not due to a reduction in the number or size of xylem conduits but to changes in the alignment of the elements. The variable conductances across the abscission zone and peduncle regions may play an important role in floral development and the response of the plant to water stress. Rose plants grown at constantly high humidity (77% RH) did not exhibit significantly different internal anatomical features of the xylem conducting system relative to roses grown in ambient, uncontrolled humidity (30 to 60% RH). Key words: abscission zone, hydraulic conductance, humidity.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3