The amino acid sequence encompassing the active-site histidine residue of lipoamide dehydrogenase from Escherichia coli labelled with a bifunctional arsenoxide

Author:

Holmes Charles F. B.,Stevenson Kenneth J.

Abstract

Pyruvate dehydrogenase multienzyme complex (PD complex) in the presence of pyruvate, thiamine pyrophosphate, coenzyme A, and Mg2+ (or NADH) was irreversibly inhibited with the radiolabelled bifunctional arsenoxide p-[(bromoacetyl)-amino]phenyl arsenoxide (BrCH214CONHPhAsO). The initial reaction of the reagent was with a reduced lipoyl group of the lipoamide acetyltransferase component to form a dithioarsinite complex. Following the normal catalytic reactions, the anchored reagent was delivered into the active site of the lipoamide dehydrogenase (E3) component where an irreversible alkylation ensued via the bromoacetamidyl moiety. Treatment with 2,3-dithiopropanol (to break dithioarsinite bonds) caused the radio-labelled reagent to reside with E3. E3 was isolated from the inhibited PD complex and CNBr cleavage of the inhibited enzyme yielded a single radiolabelled peptide that was purified on a cyanopropyl silica column using high performance liquid chromatography. The radiolabelled amino acid was identified (after acid hydrolysis) as N3-[14C]carboxymethyl histidine in agreement with earlier studies. The radiolabel was located in residue 14 of the peptide for which the sequence was determined as[Formula: see text]This sequence agrees with the amino acid sequence determined from the gene sequence of E3. The histidine alkylated in the E3 component of the PD complex by BrCH214CONHPhAsO is residue-444 and further establishes its active site role.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3