Infection of rabbit kidney cells (RK13) by enteropathogenicEscherichia colias a model to study the dynamics of actin cytoskeleton

Author:

Oliver-Gonzalez Rubén123,García-Tovar Carlos123,Juárez-Mosqueda Lourdes123,Navarro-Garcia Fernando123

Affiliation:

1. Department of Cell Biology, CINVESTAV-IPN, Ap. Postal 14-740, 07000 Mexico City, México.

2. Morphology Unit, FES-Cuautitlán, UNAM, Cuatitlán Izcalli, México.

3. Department of Morphology, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, México.

Abstract

Enteropathogenic Escherichia coli (EPEC) colonizes the intestinal mucosa and causes a cell lesion known as attachment and effacement (A/E) lesion. The molecular mechanisms for A/E lesions include injection of Tir, which is a receptor for an adhesin named intimin. The Tir–intimin interaction causes rearrangement of the cytoskeleton forming actin-rich structures called pedestals. Unfortunately, the formation of the A/E lesions and the dynamics of the actin cytoskeleton during this rearrangement induced by EPEC cannot be studied in the natural host. However, there are EPEC strains that infect rabbit (REPEC) that are genetically and pathologically similar to EPEC. Here, we used REPEC for the infection of rabbit kidney epithelial cells, line RK13, as a model to understand the actin cytoskeleton dynamics during pedestal formation. Actin-rich pedestal formation during the infection of RK13 cells by REPEC was analyzed by electron and confocal microscopy. The kinetics of infection along with the use of antibiotics for eliminating the bacteria, as well as reinfection, evidenced the plasticity of the actin cytoskeleton during pedestal formation. Thus, this model is a helpful tool for studying the dynamics of actin cytoskeleton and for correlating the data with those observed in in vivo models in rabbits experimentally infected with REPEC.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3