Abstract
The metabolism of cyclohexanecarboxylic acid by a bacterium, designated PRL W19, follows a pathway involving β-oxidation of coenzyme A intermediates analogous to the classical oxidation of fatty acids. The organism appears to have the property for the constitutive metabolism of caproic acid, and cell extracts contain high levels of the enzymes required for the functioning of the fatty acid cycle. However, the metabolism of cyclohexanecarboxylic acid requires induction by growth or incubation with an appropriate substrate. Extracts of induced cells contain several enzyme activities which are synthesized in response to the induction process. These enzymes include cyclohexanecarboxyl-CoA synthetase, cyclohexanecarboxyl-CoA dehydrogenase, 1-cyclohexenecarboxyl-CoA hydratase, and trans-2-hydroxycyclohexanecarboxyl-CoA dehydrogenase. A characteristic feature of this organism is that it becomes induced for the metabolism of benzoate and catechol during growth on cyclohexanecarboxylic acid, but benzoate does not appear to be an obligatory intermediate in the metabolism of cyclohexanecarboxylic acid.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献