Abstract
4-Aminopyridine markedly potentiates transmitter release at the frog cutaneous pectoris neuromuscular junction by increasing the quantal content even when applied at low concentrations (5–20 μM). This enhancement of transmitter release is associated with greater minimum synaptic latency, but the dispersion of the synaptic latencies does not appear much affected. This is in contrast with the action of tetraethylammonium (0.2–0.5 mM) in which case similar enhancement of transmitter release results not only in larger minimum synaptic latency but also in greater dispersion of the synaptic latencies. The time course of transmitter release associated with enhanced transmitter output is hence much more prolonged in the presence of tetraethylammonium than 4-aminopyridine, at least for low concentrations of 4-aminopyridine (5–20 μM). This indicates that their presynaptic actions differ significantly. This conclusion is further strengthened by the finding that unlike tetraethylammonium, 4-aminopyridine induces bursts of release, presumably by producing multiple action potentials in the nerve terminal. Tetraethylammonium probably acts by blocking the delayed potassium conductance, but the blockade of Ca2+-activated K+ conductance cannot be excluded. 4-Aminopyridine, however, probably blocks the fast inactivating (IA) K+ current, but it also may be acting directly on the voltage-dependent Ca2+ conductance or on the intracellular Ca2+ buffering.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献