Sensitized airway smooth muscle plasticity and hyperreactivity: a reviewThis article is one of a selection of papers published in the Special Issue on Recent Advances in Asthma Research.

Author:

Stephens N. L.1,Cheng Z.-Q.1,Fust A.1

Affiliation:

1. Manitoba Institute of Child Health, 537 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.

Abstract

To help elucidate the mechanisms underlying asthmatic bronchospasm, the goal of our research has been to determine whether airway smooth muscle (ASM) hyperreactivity was the responsible factor. We reported that in a canine model of asthma, the shortening capacity (ΔLmax) and velocity (Vo) of in vitro sensitized muscle were significantly increased. This increase was of sufficient magnitude to account for 75% narrowing of the in vivo airway, but maximal isometric force was unchanged. This last feature has been reported by others. Under lightly loaded conditions, ASM completes 75% of its isotonic shortening within the first 2 s. Furthermore, 90% of the increased shortening of ragweed pollen-sensitized ASM (SASM), compared with control (CASM), is complete within the first 2 s. The study of shortening beyond this period will apparently not yield much useful information, and studies of isotonic shortening should be focused on this interval. Although both CASM and SASM showed plasticity and adaptation with respect to isometric force, neither muscle type showed a difference in the force developed in these phases. During isotonic shortening, no evidence of plasticity was seen, but the equilibrated SASM showed increased ΔLmax and Vo of shortening. Molecular mechanisms of changes in Vo could result from changes in the kinetics of the myosin heavy chain ATPase. Motility assay, however, showed no changes between CASM and SASM in the ability of the purified myosin molecule (SF1) to translocate a marker actin filament. On the other hand, we found that the state of activation of the ATPase by phosphorylation of smooth muscle myosin light chain (molecular mass 20 000 Da) was greater in the SASM. This would account for the increased Vo. Investigating the signalling pathway, we found that whereas [Ca2+]i increased in both isometric and isotonic contraction, there was no significant difference between CASM and SASM. The content and activity of calmodulin were also not different between the 2 muscles. Nevertheless, we did find that content and total activity of smooth muscle myosin light chain kinase (smMLCK) and the abundance of its message were greater; this would explain the increased MLC20 phosphorylation. The binding affinity between Ca2+ and calmodulin and between 4 Ca2+ calmodulin and smMLCK remains to be studied. We conclude that SASM shows increased isotonic shortening capacity and velocity. It also shows increased content and total activity of smMLCK, which is consistent with the increased shortening. Plasticity produced by oscillation is not seen in the shortening muscle, although it is seen with respect to force development. It did not modulate the behaviour of the sensitized muscle.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Reference48 articles.

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 2002. Cells and genomes: the world of animal cells is represented by a worm, a fly, a mouse, and a human. In Molecular biology of the cell. Edited by anonymous. Garland Science, New York.

2. Mechanical alterations of airway smooth muscle in a canine asthmatic model

3. Sensitization alters contractile responses and calcium influx in human airway smooth muscle

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3