Author:
Friebe B.,Kim N.-S.,Kuspira J.,Gill B. S.
Abstract
Cytogenetic studies in Triticum monococcum (2n = 2x = 14) are nonexistent. To initiate such investigations in this species, a series of primary trisomics was generated from autotriploids derived from crosses between induced autotetraploids and diploids. All trisomics differed phenotypically from their diploid progenitors. Only two of the seven possible primary trisomic types produced distinct morphological features on the basis of which they could be distinguished. The chromosomes in the karyotype were morphologically very similar and could not be unequivocally identified using standard techniques. Therefore, C-banding was used to identify the chromosomes and trisomics of this species. Ag–NOR staining and in situ hybridization, using rDNA probes, were used to substantiate these identifications. A comparison of the C-banding patterns of the chromosomes of T. monococcum with those of the A genome in Triticum aestivum permitted identification of five of its chromosomes, viz., 1A, 2A, 3A, 5A, and 7A. The two remaining chromosomes possessed C-banding patterns that were not equivalent to those of any of the chromosomes in the A genome of the polyploid wheats. When one of these undesignated chromosomes from T. monococcum var. boeoticum was substituted for chromosome 4A of Triticum turgidum, it compensated well phenotypically and therefore genetically for the loss of this chromosome in the recipient species. Because this T. monococcum chromosome appeared to be homoeologous to the group 4 chromosomes of polyploid wheats, it was designated 4A. By the process of elimination the second undesignated chromosome in T. monococcum must be 6A. Analysis of the trisomics obtained led to the following conclusions. (i) Trisomics for chromosome 3A were not found among the trisomic lines analyzed cytologically. (ii) Primary trisomics for chromosomes 2A, 4A, 6A, and 7A were positively identified. (iii) Trisomics for the SAT chromosomes 1A and 5A were positively identified in some cases and not in others because of polymorphism in the telomeric C-band of the short arm of chromosome 1A. (iv) Trisomics for chromosome 7A were identified on the basis of their distinct phenotype, viz., the small narrow heads and small narrow leaves. Because rRNA hybridizes lightly to nucleolus organizer regions on chromosome 1A and heavily to nucleolus organizer regions on chromosome 5A, our results indicate that trisomics in line 50 carry chromosome 1A in triple dose and trisomics in lines 28 and 51 carry chromosome 5A in triplicate. Variable hybridization of the rDNA probe to nucleolus organizer regions on chromosomes in triple dose in lines 7, 20, and 28 precluded the identification of the extra chromosome in these lines. Cytogenetic methods for unequivocally identifying trisomics for chromosomes 1A and 5A are discussed. Thus six of the series of primary trisomics have been identified. Telotrisomic lines are also being produced.Key words: Triticum monococcum, trisomics, C-banding, Ag-NOR staining, in situ hybridization, rDNA probes, plant morphology.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献