Insights into the evolution of duplicate gene expression in polyploids fromGossypiumThis paper is one of a selection of papers published in the Special Issue on Systematics Research.

Author:

Adams Keith L.1

Affiliation:

1. UBC Botanical Garden & Centre for Plant Research and Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada (e-mail: keitha@interchange.ubc.ca).

Abstract

Polyploidy is a prominent mechanism of speciation in plants that can lead to novel phenotypes. Polyploidy is characterized by novel genetic and genomic consequences that provide raw material for morphological evolution. Polyploids often exhibit changes in genome organization and gene expression compared with their diploid progenitors. The five allopolyploid cotton (Gossypium) species and newly created cotton neopolyploids have been developed as a useful group for studies of duplicated gene expression in polyploids. Here I review recent studies on the evolution of duplicate gene expression in polyploid cotton. In addition I present new expression data from cotton neopolyploids that address the effects on expression of adding a third genome in an allohexaploid, and that provide insights into fine scale organ-specific silencing. Substantial changes in gene expression have occurred in homoeologous genes (gene pairs duplicated by polyploidy), including organ-specific gene silencing and subfunctionalization. Many of the changes in gene expression have occurred on an evolutionary timescale, whereas others occur immediately after genome merger and within a few generations. Abiotic stress can affect the expression of homoeologous gene expression, causing expression partitioning between homoeologs. To examine the effects of interspecific hybridization, without chromosome doubling, on gene expression, interspecific hybrids have been studied. Extensive variation in allelic expression was observed upon hybridization that varied by gene, organ, and genotype. Several hypotheses have been proposed for why gene expression is altered in allopolyploids and interspecific hybrids.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3