Author:
Naderi M H,Soltanolkotabi M,Roknizadeh R
Abstract
By introducing a generalization of the (p, q)-deformed boson oscillator algebra, we establish a two-parameter deformed oscillator algebra in an infinite-dimensional subspace of the Hilbert space of a harmonic oscillator without first finite Fock states. We construct the associated coherent states, which can be interpreted as photon-added deformed states. In addition to the mathematical characteristics, the quantum statistical properties of these states are discussed in detail analytically and numerically in the context of conventional as well as deformed quantum optics. Particularly, we find that for conventional (nondeformed) photons the states may be quadrature squeezed in both cases Q = pq < 1, Q = pq > 1 and their photon number statistics exhibits a transition from sub-Poissonian to super-Poissonian for Q < 1 whereas for Q > 1 they are always sub-Poissonian. On the other hand, for deformed photons, the states are sub-Poissonian for Q > 1 and no quadrature squeezing occurs while for Q < 1 they show super-Poissonian behavior and there is a simultaneous squeezing in both field quadratures.PACS Nos.: 42.50.Ar, 03.65.w
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献