Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity

Author:

Nadeem Sajid Mahmood1,Zahir Zahir Ahmad1,Naveed Muhammad1,Arshad Muhammad1

Affiliation:

1. Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan.

Abstract

Twenty rhizobacterial strains containing 1-aminocyclopropane-1-carboxylate deaminase were isolated from the rhizosphere of salt-affected maize fields. They were screened for their growth-promoting activities under axenic conditions at 1, 4, 8, and 12 dS·m–1salinity levels. Based upon the data of the axenic study, the 6 most effective strains were selected to conduct pot trials in the wire house. Besides one original salinity level (1.6 dS·m–1), 3 other salinity levels (4, 8, and 12 dS·m–1) were maintained in pots and maize seeds inoculated with selected strains of plant growth-promoting rhizobacteria, as well as uninoculated controls were sown. Results showed that the increase in salinity level decreased the growth of maize seedlings. However, inoculation with rhizobacterial strains reduced this depression effect and improved the growth and yield at all the salinity levels tested. Selected strains significantly increased plant height, root length, total biomass, cob mass, and grain yield up to 82%, 93%, 51%, 40%, and 50%, respectively, over respective uninoculated controls at the electrical conductivity of 12 dS·m–1. Among various plant growth-promoting rhizobacterial strains, S5 ( Pseudomonas syringae ), S14 ( Enterobacter aerogenes ), and S20 ( Pseudomonas fluorescens ) were the most effective strains for promoting the growth and yield of maize, even at high salt stress. The relatively better salt tolerance of inoculated plants was associated with a high K+/Na+ratio as well as high relative water and chlorophyll and low proline contents.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3