The Queen Charlotte Islands refraction project. Part I. The Queen Charlotte Fault Zone

Author:

Dehler Sonya A.,Clowes Ron M.

Abstract

The active margin between the continental North American plate and oceanic Pacific plate west of the Queen Charlotte Islands was the site of an extensive onshore–offshore seismic refraction project in 1983. An airgun line shot over two ocean-bottom seismographs (OBS's) and a 32-charge explosion line recorded on the two OBS's and eight land-based seismographs (LBS's) deployed across northern Moresby Island were selected to study the structure of the predominantly transform Queen Charlotte Fault Zone and the associated offshore terrace. Two-dimensional ray tracing and synthetic seismogram modelling produced a pronounced laterally varying velocity structural model showing three major crustal components (oceanic, terrace, and continental) separated by an outer, crustally pervasive fault and active Queen Charlotte Fault, respectively. The 3 km thick block-faulted upper terrace unit, overlain by deformed sediments, is indistinguishable from adjacent oceanic sediments and upper crustal basalts located to the west. The upper part of the 10–17 km thick lower terrace unit has anomalously low velocities relative to the adjacent oceanic and continental crustal units. A high gradient increases terrace velocity rapidly with depth until the contrast becomes negligible at approximately 17 km depth. Changes in depth to Moho beneath the terrace suggest an increase in eastward Moho dip from 2–5 °observed west of the terrace to 19 °below it. Tectonic mechanisms proposed to explain the anomalous terrace structure involve sediment accretion during subduction of oceanic lithosphere, alternating or combined with compressive upthrusting of material along near-vertical fault planes during periods of active transform motion.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3