Estimating the costs of locomotion in snow for coyotes

Author:

Crête M,Larivière S

Abstract

Carnivores living in areas of deep snow face additional energy expenditures during winter owing to increased locomotory costs. Such costs may vary in function of snow depth and hardness (sinking depth of animal) and travel speed. We estimated energetic costs of locomotion through snow in wild coyotes (Canis latrans) using three coyote-sized domestic dogs (Canis familiaris) to develop regression models predicting heart rate (as surrogate for energy expenditure) in relation to sinking depth and travel speed. In the absence of snow, heart rates of dogs increased linearly with travel speed (R2 = 0.24), whereas when snow was present, track sinking depth affected heart rate substantially more than did travel speed. To assess whether our results with domestic dogs could help explain the behaviour of wild coyotes, we snow-tracked coyotes in southeastern Quebec, Canada, during two winters. During a normal harsh winter, coyotes relied on artificially packed snow (snowmobile and animal trails) more than during a mild winter. Coyotes typically exerted a fine-scale selection for snow depth and hardness that effectively reduced their sinking depth by ~2 cm. We estimated that travelling over snow increased coyote heart rate by 4%–6% in comparison with locomotion on hard surfaces, whereas fine-scale selection saved a similar amount of extra energy. We hypothesize that the use of snow packed by anthropogenic activities, especially snowmobile trails, may not only facilitate coyote movements in deep snow environments but also allow occupation of marginal habitats such as forested areas of northeastern North America.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3