Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish?

Author:

Lawrence Michael J.1,Jain-Schlaepfer Sofia12,Zolderdo Aaron J.1,Algera Dirk A.1,Gilmour Kathleen M.3,Gallagher Austin J.14,Cooke Steven J.1

Affiliation:

1. Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.

2. College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia, 4811.

3. Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

4. Beneath the Waves, Inc., Miami, FL 33133, USA.

Abstract

A prerequisite to studying the physiological status of wild animals is the ability to obtain blood samples that reflect the condition prior to capture or handling. Based on research in avian taxa, it is recommended that such samples be obtained within 3 min of capture; however, this guideline has not been validated in wild teleosts. The present study addresses the time course of physiological changes in a number of blood metrics across six species of freshwater fish. Fishes were caught using a standardized angling protocol and held in a water-filled trough prior to the collection of a blood sample, via caudal phlebotomy, between 0.5 and 11 min after capture. Changes in whole-blood glucose and lactate concentrations, hematocrit, and plasma cortisol concentrations were assessed. Change-point analyses indicated that blood lactate concentrations and hematocrit did not deviate from baseline values until ∼2–5 min of handling for all species, whereas blood glucose concentrations generally did not deviate significantly from baseline over the 11 min test period. In all species, plasma cortisol concentrations began to increase above baseline between ∼4 and 8 min after capture. Thus, to ensure that blood samples are representative of baseline conditions across multiple metrics, we recommend that sampling be limited to less than 2 min in teleost fishes.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3