Estimating densities for sympatric kit foxes (Vulpes macrotis) and coyotes (Canis latrans) using noninvasive genetic sampling

Author:

Lonsinger R.C.1,Lukacs P.M.2,Gese E.M.3,Knight R.N.4,Waits L.P.5

Affiliation:

1. Department of Natural Resource Management, South Dakota State University, Brookings, SD 57007, U.S.A.

2. University of Montana, Wildlife Biology Program, Department of Ecosystems and Conservation Sciences, W.A. Franke College of Forestry and Conservation, Missoula, MT 59812, U.S.A.

3. United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Department of Wildland Resources, Utah State University, Logan, UT 84322, U.S.A.

4. United States Army Dugway Proving Ground, Natural Resource Program, Dugway, UT 84022, U.S.A.

5. University of Idaho, Department of Fish and Wildlife Sciences, Moscow, ID 83844, U.S.A.

Abstract

Kit fox (Vulpes macrotis Merriam, 1888) populations in the Great Basin Desert have declined and are of increasing concern for managers. Increasing coyote (Canis latrans Say, 1823) abundance and subsequent intraguild interactions may be one cause for this decline. Concurrent monitoring of carnivores is challenging and therefore rarely conducted. One possible solution for monitoring elusive carnivores is using noninvasive genetic sampling. We used noninvasive genetic sampling to collect fecal DNA from kit foxes and coyotes and estimate their densities from 2013–2014 in Utah, USA. We identified individuals based on microsatellite genotypes and estimated density with multisession spatially explicit capture–recapture models. Mean kit fox density was 0.02 foxes·km−2, while coyote densities were up to four times greater (0.07–0.08 coyotes·km−2). Kit fox densities were significantly lower than densities in the 1950s but were comparable with estimates from the late 1990s, suggesting that populations may be stabilizing after a precipitous decline. Our kit fox density estimates were among the lowest documented for the species. Our coyote density estimate was the first reported in our region and revealed that despite seemingly high abundance, densities are low compared with other regions. Our results suggested that kit foxes may be able to coexist with coyotes.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3