Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection

Author:

Quadrilatero Joe1,Alway Stephen E.2,Dupont-Versteegden Esther E.3

Affiliation:

1. Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

2. Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV, USA.

3. Department of Rehabilitation Sciences, Division of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.

Abstract

Apoptosis is a highly conserved type of cell death that plays a critical role in tissue homeostasis and disease-associated processes. Skeletal muscle is unique with respect to apoptotic processes, given its multinucleated morphology and its apoptosis-associated differences related to muscle and (or) fiber type as well as mitochondrial content and (or) subtype. Elevated apoptotic signaling has been reported in skeletal muscle during aging, stress-induced states, and disease; a phenomenon that plays a role in muscle dysfunction, degradation, and atrophy. Exercise is a strong physiological stimulus that can influence a number of extracellular and intracellular signaling pathways, which may directly or indirectly influence apoptotic processes in skeletal muscle. In general, acute strenuous and eccentric exercise are associated with a proapoptotic phenotype and increased DNA fragmentation (a hallmark of apoptosis), whereas regular exercise training or activity is associated with an antiapoptotic environment and reduced DNA fragmentation in skeletal muscle. Interestingly, the protective effect of regular activity on skeletal muscle apoptotic processes has been observed in healthy, aged, stress-induced, and diseased rodent models. Several mechanisms for this protective response have been proposed, including altered anti- and proapoptotic protein expression, increased mitochondrial biogenesis and improved mitochondrial function, and reduced reactive oxygen species generation and (or) enhanced antioxidant status. Given the current literature, we propose that regular physical activity may represent an effective strategy to decrease apoptotic signaling, and possibly muscle wasting and dysfunction, during aging and disease.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3