Preliminary assessment of a shortcut in nitrogen removal from wastewater

Author:

Turk O.,Mavinic D. S.

Abstract

The objective of this long-term research project was to demonstrate the feasibility of removing nitrogen from highly nitrogenous wastewater by (a) blocking the nitrification process at the intermediary nitrite level through the action of free ammonia and (b) subsequently reducing the nitrite to nitrogen gas. The success of such a process could lead to substantial reductions in nitrogen removal costs.Two identical bench-scale activated sludge systems were operated for 147 days, in the initial phase. Each system was composed of four equal-sized, completely mixed cells in series. The free ammonia concentration was highest in the first cell of each system. It averaged 2 mg NH3-N/L in the first system and 5 mg NH3-N/L in the second. Nitrite buildup, in excess of 80% of the oxidized nitrogen present, was induced and sustained for around 2 months in all cells of the second system, after which time a steady decline occurred. Nitrite buildup could not be sustained in the first system. Average chemical oxygen demand (COD) for nitrite reduction was 40% lower than that for nitrate reduction. The nitrification rate for the ammonia oxidizers was similar for both systems. The presence of up to 100 mg [Formula: see text] nitrite in system 2 caused no discernible inhibition. Subsequent runs proved that nitrite accumulation could not be sustained indefinitely, owing to acclimation to free ammonia levels as high as 22 mg NH3-N/L. Periodic resting and flushing may be required; further research is being pursued along these lines. Key words: biological treatment, denitrification, nitrification, nitrite, nitrogen removal, nitrogenous wastewater.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3