A simple reason for non-linear mixture rules in chemical kinetics. Part 1. Vibrational relaxation of diatomic molecules

Author:

Carruthers Chris,Teitelbaum Heshel

Abstract

The generalized rate law for the vibrational relaxation of diatomic molecules is extended to include inert collision partners. V–V energy transfer processes are accounted for explicitly as are thermal effects. The molecules are treated as Morse oscillators as far as energetics are concerned; however, the microscopic rate constants are Landau–Teller type. It is found that the phenomenon of non-linear mixture rules arises when experimental data are forced to fit a first-order rate law. The persistence of V–V processes at times well-advanced into the relaxation zone is responsible for deviations from linearity. The non-linearities are most pronounced at high temperatures, and can be avoided only by using extremely dilute mixtures. Several sources of ambiguity are pointed out. The type of excitation method influences the initial deviation from a Boltzmann distribution and plays a crucial role in determining the importance of V–V processes and hence the degree of non-linearity. Thus, when the initial distribution is Boltzmann as in shock waves, the mixture rule is found to be absolutely linear for the vibrational relaxation of diatomic molecules.Several examples, heretofore not recognized as such, are pointed out in the literature.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3