Optimization and validation of rep-PCR genotypic libraries for microbial source tracking of environmental Escherichia coli isolates

Author:

Lyautey Emilie123,Lu Zexun123,Lapen David R.123,Berkers Tanya E.123,Edge Thomas A.123,Topp Edward123

Affiliation:

1. Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada.

2. Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.

3. Environment Canada, 867 Lakeshore Road, Burlington, ON L7R 4A6, Canada.

Abstract

Escherichia coli can be used to help identify sources of fecal contamination in the environment. Escherichia coli genotypic fecal libraries and pattern-matching algorithms were assessed for their effectiveness in correctly identifying sources. Fecal samples (n = 172) were collected from various sources from three agricultural landscapes in Canada. Escherichia coli isolates were fingerprinted using BOX- and enterobacterial repetitive intergenic consensus (ERIC) - polymerase chain reaction primers, revealing 769 and 1 057 distinct genotypes, respectively, for the 9 047 isolates collected in 2004 in Ontario. The average rate of correct classification (ARCC) was comparable for BOX- (48%) and ERIC-based (62%) libraries and between libraries with clones removed per sample (55%) and clones removed per unit (54%). ARCC increased with fewer classification units (from 44% to 65%). ARCC for k-nearest neighbour (64%) and maximum similarity (60%) algorithms were comparable, but maximum similarity had better sensitivity and specificity than k-nearest neighbour. Geographical and temporal shifts in community composition resulted in loss of accuracy. Several ERIC genotypes (n = 112) were common between sources and were removed from the library, improving ARCC (77%). The latter library proved to be more accurate, but its accuracy with respect to sourcing environmental isolates remains to be tested.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3