Multiscale structural characterizations of anisotropic natural granite residual soil

Author:

Liu Xinyu12ORCID,Zhang Xianwei1ORCID,Kong Lingwei1ORCID,Wang Gang12ORCID,Li Chengsheng3

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China

2. University of Chinese Academy of Sciences, Beijing, 100049, China

3. Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China

Abstract

While the anisotropy of sedimentary soil—particularly the underlying role of soil structure—is well understood, similar knowledge about granite residual soil formed by weathering is scarce. In particular, the evolution of soil structure during the hollow cylinder torsional shear tests (among the most appropriate for studying soil strength anisotropy) remains largely unknown. This study systematically investigates the multiscale structural properties of granite residual soil using stereo microscopy, scanning electron microscopy, energy-dispersive spectrometry, and computed tomography. Furthermore, the structural evolution during hollow cylinder torsional shear tests is traced. Results indicate the strength anisotropy of residual soil is associated with horizontal fissures which cause low shear strength when the soil is sheared with a principal stress direction of 45°. The cementation via Fe is characterized by a uniform distribution. Different evolutionary patterns are observed for soils within the shear band, inside the necking area, and in other regions. It is not always the case that particles are rearranged with their long axis perpendicular to the major principal stress. This study improves the understanding of natural residual soil structure and provides some insights into its anisotropic behavior.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3