Multi-stage creep behavior of frozen granular soils: experimental evidence and constitutive modeling

Author:

Schindler Ulrich1ORCID,Cudmani Roberto1,Chrisopoulos Stylianos1,Schünemann Andreas1

Affiliation:

1. Technical University of Munich, Chair and Testing Institute of Soil Mechanics and Foundation Engineering, Rock Mechanics and Tunneling, Franz-Langinger-Str. 10, Munich 81245, Germany

Abstract

The significance of ground freezing is becoming ever more germane as the design of new urban tunneling systems requires more complex geometries and higher bearing capacities, which are limited with conventional construction methods. Ground freezing is an advanced construction technique to make the water-saturated subsoil impermeable and temporarily increase its strength and stiffness. This study reports experimental investigations consisting of single-stage and multi-stage creep tests under uniaxial loading. The comparison of the different loading types reveals the influence of the stress–strain history on the rate- and temperature-dependent behavior of frozen granular soils. We extend the constitutive model for frozen soils proposed by Cudmani et al. (2022, Géotechnique, doi:10.1680/jgeot.21.00012) to consider stepwise loading and creep by coupling creep time with stress–strain history. Moreover, we simulate element tests and compare the simulations with our own experimental data as well as data from the literature to achieve the first step in validating the extended model. The good agreement of the numerical and experimental results confirms the constitutive model’s ability to capture the main features of the complex mechanical behavior of frozen granular soils for single-stage as well as multi-stage loading under constant temperatures.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3