An effective stress-based approach to modeling the chemo-mechanical behavior of saturated active clay

Author:

Song Zhaoyang1,Ma Tiantian2,Liu Yan3,Cai Guoqing3,Wei Changfu45

Affiliation:

1. Beijing University of Technology, 12496, Beijing, China;

2. Chinese Academy of Sciences Wuhan Branch, 53041, Institute of Rock and Soil Mechanics, Wuhan, China;

3. Beijing Jiaotong University, 47829, Beijing, China;

4. Chinese Academy of Sciences, 12381, Beijing, China

5. Guilin University of Technology, 66515, Guilin, China;

Abstract

Pore water chemistry can exert significant controls over the chemo-mechanical behavior of chemically-active soils, which has not been characterized by using the traditional Terzaghi’s effective stress to a satisfactory extent. In this paper, based on the concept of intergranular stress, the effective stress for saturated active soils is first reconceptualized and then incorporated into the framework of the modified Cam-Clay model to describe the mechanical response of soils upon complex chemical and mechanical loadings. The proposed model is capable of capturing very well the diverse features of the chemo-behavior of saturated active soils, while inheriting all the advantages of the MCC model, by introducing only one additional parameter. Within this context, a simple equation is derived to predict the development of swelling pressure with the variation of pore water chemistry. It is shown the proposed swelling-pressure equation predicts very well the development of swelling pressure for expansive soils with a dilute pore solution, though discrepancy appears at high concentration. Because the double layer of clay particles is severely suppressed at high salt concentration, the microfabric of soil can be significantly changed, pointing to the importance of taking into account the effect of soil fabric in the constitutive modeling of active soils with high pore water concentration.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soil Shrinkage: Underlying Mechanisms Revealed by Intergranular Stress;Journal of Geotechnical and Geoenvironmental Engineering;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3