Multiphase lattice Boltzmann modeling of cyclic water retention behavior in unsaturated sand based on X-ray computed tomography

Author:

Wang Qiuyu1,Milatz Marius2,Hosseini Reihaneh1,Kumar Krishna1

Affiliation:

1. The University of Texas at Austin, Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, 301 E. Dean Keeton St. C2100, Austin, TX, 78712-2100, USA

2. Hamburg University of Technology (TUHH), Institute of Geotechnical Engineering and Construction Management, Harburger Schloßstraße 36, Hamburg, 21079, Germany

Abstract

The water retention curve (WRC) defines the relationship between matric suction and saturation and is a key function for determining the hydro-mechanical behavior of unsaturated soils. We investigate possible microscopic origins of the water retention behavior of granular soils using both computed tomography (CT) experiment and multiphase lattice Boltzmann Method (LBM). We conduct a CT experiment on Hamburg sand to obtain its WRC and then run LBM simulations based on the CT grain skeleton. The multiphase LBM simulations capture the hysteresis and pore-scale behaviors of WRC observed in the CT experiment. Using LBM, we observe that the spatial distribution and morphology of gas clusters varies between drainage and imbibition paths and is the underlying source of the hysteresis. During drainage, gas clusters congregate at the grain surface; the local suction increases when gas clusters enter through small pore openings and decreases when gas clusters enter through large pore openings. Whereas, during imbibition, gas clusters disperse in the liquid, the local suction decreases uniformly. Large pores empty first during drainage and small pores fill first during imbibition. The pore-based WRC shows that an increase in pore size causes a decrease in suction during drainage and imbibition, and an increase in hysteresis.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3