Speciation by hybridization in phasmids and other insects

Author:

Bullini Luciano,Nascetti Giuseppe

Abstract

Speciation by hybridization in insects has been recently recognized on the basis of isozyme and chromosome studies showing that several species, either diploid or polyploid, have genomes that combine the genes and chromosome sets of two (or more) bisexual species. Until this evidence became available, thelytokous invertebrates were all considered uniparental derivatives of bisexual species. In this paper, we review examples including the stick insects Bacillus whitei, B. atticus, B. lynceorum, Leptynia hispanica D, Clonopsis gallica, Carausius morosus; the grasshopper Warramaba virgo; some Otiorrhynchus weevils; the planthopper Muellerianella 2-fairmairei–brevipennis; and black flies of the genera Gymnopais and Prosimulium. For several species (e.g., Warramaba virgo and Bacillus whitei), both parental taxa have been recognized, and their hybrid origin has been genetically assessed. In others (e.g., B. atticus), only one of the bisexual parental species has been detected; but their hybrid origin is supported by strong evidence, at both the isozyme and chromosome levels. For other supposed hybrid species (e.g., Clonopsis gallica, Carausius morosus), no bisexual ancestors have been detected, possibly because competition with their hybrid derivatives has made them rare or extinct. Insect hybrid species may differ in their mode of reproduction (apomictic or automictic thelytokous parthenogenesis, gynogenesis), degree of ploidy, and genetic structure (level of heterozygosity, clonal variation). The parallels between insect and vertebrate hybrid species, in which this phenomenon has been recognized and widely studied in the past 50 years, are drawn. The main problems involved in the origin and evolution of hybrid species are discussed, with particular regard to (i) changes in the maturation divisions allowing the transmission of the hybrid genome to the next generation, and (ii) their successful adaptation. The "spontaneous" and "hybrid" theories for the origin of unisexual forms are compared, with regard to hybrid species. An origin of hybrid species from occasional parthenogenetic development of hybrid eggs produced in areas of extensive interspecific hybridization (e.g., disturbed habitats) is suggested. Hybridization would not itself cause changes in the maturation divisions (which are controlled by genes of tychoparthenogenetic eggs) but only favour their selection through heterosis. The role of the so-called "heterotic" advantage (resulting from high levels of heterozygosity) and "demographic" advantage (resulting from all-female reproduction) in the evolutionary success of hybrid species is discussed. It is concluded that habitat disturbance by man is favouring both the onset of hybrid species and their successful spread.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3