A new mathematical model for resonant-column measurements including eddy-current effects

Author:

Cascante Giovanni,Vanderkooy John,Chung Wilson

Abstract

Wave velocity and attenuation are commonly studied in the laboratory with the resonant-column device (American Society for Testing and Materials standard), which is driven by a set of coils and magnets. This paper presents a new and robust mathematical model of the electromechanical resonant-column system. The model is used to compute various transfer functions. Eddy currents, a new source of damping identified in the resonant-column device, introduce damping proportional to the velocity of the magnets. Eddy-current damping is considered in the mathematical model. A testing program is devised to calibrate the resonant column with three aluminum probes. Experimental and theoretical results show an excellent agreement (4% maximum error). Exploratory results are presented for a dry-sand specimen. A resonant-column device is modified to demonstrate the significant effect of the induced voltage (electromotive force (EMF)) on damping ratio if tests are not based on current measurements. Free-vibration tests on aluminum specimens and a dry-sand specimen show a significant effect of the induced EMF (up to 400% increase in damping for the sand specimen). The induced voltage depends on the resonant frequency and damping of the specimen. In the case of aluminum probes, eddy-current damping represents 20–150 times the material damping of the specimen. Preliminary results on dry sand show that eddy-current damping represents up to a 15% increase in damping ratio. However, the magnitude of eddy-current damping depends on the configuration and materials used in the resonant-column device. The smaller the damping ratio of the specimen is, the more important the eddy-current damping becomes.Key words: damping, eddy currents, mechanical waves, resonant-column device, shear modulus, wave velocity.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3