Author:
Collin Guy J.,Deslauriers Hélène,Auclair Sylvain
Abstract
Photolysis of 2-methyl-1-butene (M2B1), cis-2-pentene (CP2), and 3-methyl-1-butene (M3B1) has been systematically studied at 163 nm. Pressure effect has been measured at 147, 163, and 174 nm. The main fragmentation process of the photoexcited olefine is the C—C split of the bond located in position β relative to the double bond:[Formula: see text] α-Methallyl radicals obtained in the M3B1 and CP2 photolysis decompose partly at low pressure, giving rise to the formation of 1,3-butadiene and hydrogen atoms. β-Methallyl radicals decompose also at low pressure into allene and methyl radicals. Butadiene and allene quantum yields follow the Stern–Volmer law, and this allows us to determine the ratio of the rate constant of dissociation relative to the rate constant of stabilization, kd/ks, through collision of the α- and β-methallyl radicals. From these values, we conclude that the excess of photon energy is not statistically distributed into the fragments, and that the decomposition process follows one (or several) particular law(s).
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献