Studies on Hydrogen–Oxygen Systems in the Electrical Discharge. VII. Deuterium Isotope Effects in the Chemistry of the Hydrogen Polyoxides

Author:

Arnau José L.,Giguère Paul A.

Abstract

The kinetics of oxygen evolution on warming the trapped products (at −196 °C) from water or hydrogen peroxide vapor dissociated in a glow discharge were studied by the manometric method. Under closely controlled conditions it was possible to distinguish clearly the decomposition of the two intermediates, H2O3 and H2O4. The latter begins to decompose measurably following crystallization of the glassy solid at about −115°; the trioxide decomposes readily between −50 and −35°. Typically, the yields of H2O3 from dissociated water vapor were of the order of 3 to 5 mol%; those of H2O4, only about one-tenth as much. Varying the distance between the microwave discharge and the cold trap was found to affect differently the yields of the various products. Those of water and peroxide showed a simple, direct correlation; the minor constituents H2O3 and H2O4 followed entirely different patterns. Only a small fraction of the peroxide is formed via the H2O4 intermediate in these systems. Less water, and more of the higher oxides, were obtained from dissociated hydrogen peroxide than from water vapor.The deuterated systems showed some unusual isotope effects. The yields of D2O3 were always higher (up to twice and even more) than those of H2O3 under similar conditions. The other products showed little or no such effect, except for occluded oxygen and ozone which decreased by about half. Finally, the deuterium polyoxides decompose at slightly higher temperatures (10 to 15°) than their hydrogen analogs. Mechanisms are proposed for the formation and decomposition of the polyoxides.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3