Ridge subduction: kinematics and implications for the nature of mantle upwelling

Author:

Farrar Edward,Dixon John M.

Abstract

Ridge subduction follows the approach of an oceanic spreading centre towards a trench and subduction of the leading oceanic plate beneath the overriding plate. There are four possible kinematic scenarios: (1) welding of the trailing and overriding plates (e.g., Aluk–Antarctic Ridge beneath Antarctica); (2) slower subduction of the trailing plate (e.g., Nazca–Antarctic Ridge beneath Chile and Pacific–Izanagi Ridge beneath Japan); (3) transform motion between the trailing and overriding plates (e.g., San Andreas Transform); or (4) divergence between the overriding and trailing plates (e.g., Pacific – North America). In case 4, the divergence may be accommodated in two ways: the overriding plate may be stretched (e.g., Basin and Range Province extension, which has brought the continental margin into collinearity (and, therefore, transform motion) with the Pacific – North America relative motion); or divergence may occur at the continental margin and be manifest as a change in rate and direction of sea-floor spreading because the pair of spreading plates changes (e.g., from Pacific–Farallon to Pacific – North America), spawning a secondary spreading centre (i.e., Gorda – Juan de Fuca – Explorer ridge system) that migrates away from the overriding plate.Mantle upwelling associated with sea-floor spreading ridges is widely regarded as a passive consequence, rather than an active cause, of plate divergence. Geological and geophysical phenomena attendant to ridge–trench interaction suggest that regardless of the kinematic relations among the three plates, a thermal anomaly formerly associated with the ridge migrates beneath the overriding plate. The persistence of this thermal anomaly demonstrates that active mantle upwelling may continue for tens of millions of years after ridge subduction. Thus, regardless of whether the mantle upwelling was active or passive at its origin, it becomes active if the spreading continues for sufficient time and, thus, must contribute to the driving mechanism of plate tectonics.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3