Early enrichment effects on brain development in hatchery-reared Atlantic salmon (Salmo salar): no evidence for a critical period

Author:

Näslund Joacim1,Aarestrup Kim2,Thomassen Søren T.3,Johnsson Jörgen I.1

Affiliation:

1. University of Gothenburg, Department of Biological and Environmental Sciences, Box 463, SE-405 30 Gothenburg, Sweden.

2. Technical University of Denmark (DTU), National Institute of Aquatic Resources, Vejlsøvej 39, DK-8600 Silkeborg, Denmark.

3. Danish Centre for Wild Salmon, Brusgårdsvej 15, DK-8960 Randers SØ, Denmark.

Abstract

In hatcheries, fish are normally reared in barren environments, which have been reported to affect their phenotypic development compared with wild conspecifics. In this study, Atlantic salmon ( Salmo salar ) alevins were reared in conventional barren hatchery trays or in either of two types of structurally enriched trays. We show that increased structural complexity during early rearing increased brain size in all investigated brain substructures. However, these effects disappeared over time after transfer to barren tanks for external feeding. Parallel to the hatchery study, a group of salmon parr was released into nature and recaptured at smoltification. These stream-reared smolts developed smaller brains than the hatchery reared smolts, irrespective of initial enrichment treatment. These novel findings do not support the hypothesis that there is a critical early period determining the brain growth trajectory. In contrast, our results indicate that brain growth is plastic in relation to environment. In addition, we show allometric growth in brain substructures over juvenile development, which suggests that comparisons between groups of different body size should be made with caution. These results can aid the development of ecologically sound rearing methods for conservational fish-stocking programs.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3