Author:
Pandey Raj N.,Henry Patrick M.
Abstract
The kinetics of the palladium(II) acetate catalyzed exchange of vinyl propionate with acetic acid solvent to give vinyl acetate has been studied in the sodium acetate concentration range from 0 to 1 M. The exchange rate first sharply increases as [NaOAc] increases, reaches a maximum at about 0.2 M and then gradually decreases as the sodium acetate concentration is in-creased to 1.0 M. Using previous results on the equilibrium between palladium(II) acetate and sodium acetate in acetic acid it can be shown that the rate expression for exchange is: rate = (ko + kt[Pd3(OAc)6] + kd[Na2Pd2(OAc)6]) [CH2=CHO2CC2H5] where ko = 2 × 10−4 s−1, kt = 0.045 M−1 s−1, and kd = 0.089 M−1 s−1. A monomeric palladium(II) species, Na2Pd(OAc)4, formed at high [NaOAc] is unreactive. Since the rate expression does not contain a term in [NaOAc], the sodium acetate serves only to convert one palladium(II) species to another. The lack of a [NaOAc] term in the rate expression for the Na2Pd2(OAc)6 catalyzed reaction is believed to result from cancellation of an inhibitory term for π-complex formation by a catalytic term in [NaOAc] in the rate determining conversion of π -complex to σ-complex (acetoxypalladation). Stereochemical studies indicate that acetoxypalladation is nonstereospecific. This result is expected since in the chloride free system acetate is both a ligand and a reactant. Thus it can attack from both inside and outside the coordination sphere of Pd(II).
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献