ATMOSPHERIC EFFECTS ON COSMIC RAY INTENSITY AT SEA LEVEL

Author:

Mathews P. M.

Abstract

Cosmic ray intensity variations of primary origin and those caused by meteorological changes appear superposed in records obtained from meson counter telescopes and neutron monitors at sea level. The study of either of these types of variation is thus greatly complicated by the presence of the other. In the present work, we have for the first time taken the step of processing the raw data to eliminate primary variations (and the inherent statistical fluctuations) so as to make possible a direct comparison of the remaining variations with the changes in atmospheric variables over the same period. The subsequent analysis confirms the expectation that there are no appreciable atmospheric effects on the intensity of the nucleonic component beyond the well-known effect associated with the sea level barometric pressure B. But in the meson case there is strong evidence that the widely used set of variables H100, T100 (the height and temperature of the 100-mb level) and B is not very suitable for representing atmospheric effects; it seems essential to include a variable representing temperatures in the lower part of the atmosphere, and the set of variables T800 (temperature of the 800-mb layer), H100, and B, with coefficients kT = −.082 ±.008%/°C, kH = −3.04 ±.61%/km, and kB = −.134 ±.004%/mb appears to be the best. The theoretical formula of Dorman (1957), with a barometric coefficient β = −.147 ±.004%/mb and with the term representing the "temperature effect" reduced by a factor.76 ± .03, gives slightly better results. However, the improvement, at least in the case of the data we have analyzed, is too small to justify the great labor involved in using this formula.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3