Abstract
Wildlandurban fire destruction depends on homes igniting and thus requires an examination of the ignition requirements. A physicaltheoretical model, based on severe case conditions and ideal heat transfer characteristics, estimated wood wall ignition occurrence from flame radiation heating and piloted ignition requirements. Crown fire experiments provided an opportunity for assessing model reliability. The crown fire experiments were specifically instrumented with wood wall sections and heat flux sensors to investigate direct flame heating leading to home ignition during wildland fires. The experimental results indicated that the flame radiation model overestimated the structure-to-flame distance that would result in wood wall ignition. Wall sections that ignited during the experimental crown fires did not sustain flaming after crown fire burnout. The experiments also revealed that the forest canopy attenuated the flame radiation as the crown fire spread within the forest plot. Ignition modeling and the associated crown fire experiments described the flame-to-structure distance scale associated with flame heating related to wall ignition.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献