Abstract
Leaf nuclei of vegetative and reproductive plants of Xanthium strumarium L. were incubated with the postribosomal supernatant of either phase and changes at the transcriptional level were studied in homologous and heterologous combinations. In the presence of the supernatant of reproductive plants, RNA synthesis by vegetative nuclei was decreased by 25%. Reproductive nuclei were less active in RNA synthesis. Gel electrophoretic studies revealed four RNA bands in vegetative nuclei incubated with reproductive supernatant, including a fast-moving low molecular weight band that could not be detected when the "vegetative" supernatant was used. The adenine/uracil ratios of the newly synthesized RNA of vegetative nuclei treated with vegetative and reproductive supernatants were 1.46 and 1.54, respectively, compared with 1.15 and 1.04 in the reproductive nuclei. Competitive DNA–RNA hybridization experiments indicated that about 2% of the [3H]RNA synthesized by nuclei of vegetative plants in the presence of the supernatant of reproductive plants could not be beaten out by the RNA of vegetative plants. Small quantitative differences, thus, may be expected in the RNA molecules synthesized by nuclei in the presence of the supernatant fraction of vegetative and reproductive plants. The supernatant fraction of the reproductive tissues decreased the incorporation of [3H]alanine and [3H]leucine in both the buffer-soluble and acid-soluble proteins and the nuclei of vegetative plants were more active in protein synthesis. Protein patterns as studied by acrylamide gel electrophoresis revealed alterations when vegetative leaf nuclei were incubated with the supernatant of reproductive tissues.
Publisher
Canadian Science Publishing