Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola

Author:

Grayston Susan J.,Germida James J.

Abstract

Canola (Brassica napus) has a high sulfur requirement during vegetative growth and exhibits symptoms of sulfur deficiency when cropped on Saskatchewan soils low in plant available sulfur. Elemental sulfur (S0) is frequently used as a fertilizer to alleviate this deficiency. The potential of sulfur-oxidizing microorganisms to enhance the growth of canola in S0 fertilized soils was assessed. Sulfur-oxidizing bacteria and fungi were isolated from the rhizosphere and rhizoplane of canola grown in four different Saskatchewan soils under growth chamber conditions. Of 273 bacterial isolates, 245 (89.7%) oxidized S0 to thiosulfate or tetrathionate in vitro, and 133 (48.7%) oxidized S0 to sulfate; 70 fungal isolates oxidized S0 to sulfate. Eighteen bacterial isolates demonstrating the highest in vitro sulfur oxidation were tested as seed inoculants under growth chamber conditions, with S0 as sulfur source. Fourteen isolates increased canola leaf size measured at the bud stage of growth, and seven isolates increased root and pod dry weights at maturity. Three of the 14 isolates were also able to stimulate canola leaf area in the presence of plant available sulfate. The shoot material from canola inoculated with two of these isolates contained more iron, sulfur, and magnesium than uninoculated canola. Three of the 14 isolates inhibited the growth of the canola fungal pathogens, Rhizoctonia solani AG2-1, R. solani AG4, and Leptosphaeria maculans "Leroy." Another isolate was antagonistic towards both R. solani strains and another inhibited the growth of R. solani AG2-1 and L. maculans "Leroy." Thus some sulfur-oxidizing isolates appear to stimulate canola growth due to the enhancement of mineral nutrient uptake, whereas in other cases antibiosis towards canola pathogens may also be involved. Key words: elemental sulfur, oxidation, canola, rhizosphere, plant growth promoting rhizobacteria.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3