Two channel competitive photodecomposition reaction of gaseous bromoethane at 193.1 nm

Author:

Jung Kyung-Hoon,Lee Chong Mok,Yoo Hee Soo

Abstract

The vacuum ultraviolet photolysis of gas phase bromoethane at 193.1 nm (6.42 eV) was studied over the pressure range of 1.1–303.2 Torr at room temperature using a carbon atom lamp. The pressure effect with and without inert gas, i.e., He or N2, was investigated. A scavenger effect of the reaction was also observed by adding NO as a radical scavenger. The principal reaction products were C2H6, C2H4, 1,1-C2H4Br2, and n-C4H10. The quantum yields of C2H4 and C2H6 were found to increase slightly with the reactant pressure. When the pressure of He or N2 was varied at a constant pressure of C2H5Br, however, the quantum yields of C2H4 and C2H6 were found to be pressure independent. Addition of NO completely suppressed the formation of C2H6, C2H4Br2, and C4H10, and partially reduced that of C2H4. These results were interpreted in terms of two channel competition between the molecular elimination and the formation of radicals. Two different decomposition modes were 82% radical reaction and 18% molecular elimination.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rate Constants for the Reactions of a Series of Alkylperoxy Radicals with NO;The Journal of Physical Chemistry A;2005-04-20

2. Reactions of Methyl- and Ethylperoxy Radicals with NO Studied by Time-Resolved Negative Ionization Mass Spectrometry;The Journal of Physical Chemistry A;2004-10-29

3. Fluence and pressure effects on IR multiphoton dissociation of ethylbromide;Journal of Photochemistry and Photobiology A: Chemistry;1994-12

4. Photolysis of ethyl chloride at 121.6 nm;Journal of Photochemistry and Photobiology A: Chemistry;1992-03

5. Primary processes in the 163.3 nm photolysis of gas-phase ethyl chloride;Journal of Photochemistry and Photobiology A: Chemistry;1990-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3