Electron spin resonance study of the reaction of hydrogen atoms with methane

Author:

Marquaire Paul-Marie,Dastidar Ashok Ghose,Manthorne Kim C.,Pacey Philip D.

Abstract

The reaction: H + CH4 → CH3 + H2 has been investigated in a flow system between 348 and 421 K. Hydrogen atoms were generated in a microwave discharge, introduced to the reactor through a movable injector, and monitored by electron spin resonance. After an initial decay attributed to reaction with impurity, the hydrogen atom concentration decayed in a pseudo-first-order manner. Ethane was detected by gas chromatography, consistent with its formation by the following reaction: 2CH3 → C2H6. The amount of ethane formed at 421 K was only 0.015 times the amount of hydrogen atoms reacting. Most methyl radicals were assumed to have been removed by the process: H + CH3 + M → CH4 + M. Because of this process, two hydrogen atoms were removed each time the title reaction occurred. Applying this stoichiometric factor, the rate constant for the elementary reaction was calculated to be 2.5 × 103 L mol−1 s−1 at 348 K, increasing to 2.0 × 104 L mol−1 s−1 at 421 K. Most of the previous discrepancy between kinetics and thermochemistry has been eliminated; the exothermicity at 0 K was reduced to 0.8 ± 0.4 kJ mol−1, which corresponds to a standard heat of formation of the methyl radical of 145 kJ mol−1. Properties of the activation barrier have been inferred from the experimental data with the aid of transition state theory. The fitted barrier height was 63 ± 1 kJ mol−1, the average of five low-frequency vibrational term values was 640 ± 30 cm−1, and the characteristic tunnelling temperature was 500 ± 30 K.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3