Formation and structure of root nodules induced on Macroptilium atropurpureum inoculated with various species of Rhizobium

Author:

Trinick Michael J.,Miller Celia,Hadobas Paul A.

Abstract

Fifteen strains of Rhizobium leguminosarum biovar trifolii formed ineffective nodules and (or) nodule-like structures (rhizobia were re-isolated from both structures) on Macroptilium atropurpureum grown in enclosed glass tubes. Bacteria were observed among the parenchyma cells surrounding the nodule-like structures. One variant of R. leguminosarum biovar trifolii (NGR66/ST) isolated from M. atropurpureum formed nodules on this host that exhibited abnormal intercellular and intracellular infection. The bacteria (NGR66/ST) were contained within threadlike structures, surrounded by matrix material. The identities of the Rhizobium strains were confirmed serologically after reisolation and in sections of nodule tissue using immunogold labelling. Rhizobium leguminosarum biovar phaseoli strain NGR76 isolated from Phaseolus vulgaris formed nodules on M. atropurpureum resembling those formed by effective Bradyrhizobium strains. The association was partially effective in nitrogen fixation, and this was reflected in the nodule structure. The percentage of cells infected was lower than that in fully effective nodules. There was a high frequency of infected cells showing degeneration; these were located throughout the nodule tissue and were often adjacent to healthy infected cells. The rhizobia appeared to infect new nodule cells via infection threads, which were abundant both intercellularly and intracellularly in young, mature, and degenerating host nodule cells. Strains of R. leguminosarum biovar viceae and Rhizobium meliloti were unable to induce nodule-like structures on M. atropurpureum. Key words: Macroptilium, Bradyrhizobium, Rhizobium, microscopy, nodule, structure.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3