Biosynthesis of Nitrogenous Phospholipids in Spinach Leaves

Author:

Marshall M. O.,Kates M.

Abstract

Pathways for biosynthesis of phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC), in spinach leaves have been studied both in vivo (whole leaves and leaf slices) and in vitro (cell-free leaf fractions). Biosynthesis of PS was shown to occur by the action of a particle-bound CDP-diglyceride: serine phosphatidyltransferase, and PE by the action of a PS-decarboxylase localized in the 100 000 × g supernatant fraction. PE was also formed by the operation of the CDP-ethanolamine:diglyceride phosphorylethanolamine transferase, localized in the microsomal fraction. The presence of ethanolamine kinase required for formation of phosphorylethanolamine was demonstrated in vitro, but not the presence of CTP:phosphorylethanolamine cytidyltransferase; however, the latter is presumed present on the basis of in vivo results. Operation of the methylation pathway for biosynthesis of PC was established in vivo, and direct methylation of phosphatidyl-N-methylethanolamine to phosphatidyl-N,N-dimethylethanolamine (PE-diMe) and of PE-diME to PC by S-adenosylmethionine was demonstrated with a particulate enzyme system localized in the microsomal fraction; direct methylation of PE itself could not be shown in this system. PC was also synthesized by the CDP-choline:diglyceride phosphorylcholine transferase system localized in the microsomal fraction. Synthesis of PE and PC by Ca2+-stimulated exchange reactions with ethanolamine and choline, respectively, could be demonstrated, but at low rates. However, no synthesis of PS by exchange reactions with serine could be detected.

Publisher

Canadian Science Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3