Author:
Zipperle Jr. Gene F.,Ezzell Jr. John W.,Doyle Ronald J.
Abstract
Cell walls of Bacillus anthracis were found to be resistant to lysozyme, and partially resistant to mutanolysin, a muramidase from Streptomyces globisporus. Following treatment with acetic anhydride, it was observed that the walls were highly susceptible to hydrolysis by lysozyme or mutanolysin. Analyses of cell walls, prior to and following derivatization with fluorodinitrobenzene, revealed that approximately 88% of the glucosamine residues and 34% of the muramic acid residues of the peptidoglycan contained unsubstituted amino groups, thereby providing an explanation for the resistance of the walls to lysozyme. The walls of B. anthracis were approximately 19% cross-linked, based on the findings that 81% of the diaminopimelic acid residues could be modified by fluorodinitrobenzene. Walls of B. thuringiensis 4040 and B. cereus ATCC 19637 also contained high percentages of unsubstituted amino sugars, and unless acetylated, were also relatively resistant to lysozyme and mutanolysin. When B. anthracis, B. cereus, or B. thuringiensis were grown in the presence of 100 μg/mL lysozyme, there was a decrease in the average number of cells per chain, but there was no decrease in growth rates, suggesting that the enzyme was acting at septa. It is unlikely that lysozyme and autolysins act synergistically in Bacillus, because azide anion, which activates autolysins, did not enhance the lytic action of lysozyme in B. anthracis, B. cereus, or B. thuringiensis.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献