Pisum sativum cultivar effects on hydrogen metabolism in Rhizobium

Author:

Bedmar Eulogio J.,Phillips Donald A.

Abstract

Data from 14 Pisum sativum L. cultivars establish that three pea genotypes, which were previously reported to affect net H2 evolution from root nodules in air and uptake hydrogenase activity of Rhizobium leguminosarum 128C53, are not unique. Two pea lines, 'JI1205' and 'Green Arrow,' produced very active uptake hydrogenase activity in strain 128C53, and essentially no H2 was evolved in air from root nodules capable of reducing 20 μmol C2H2 ∙ plan−1 ∙ h−1. Five other cultivars produced significantly lower uptake hydrogenase activities in the same bacterial strain and had much higher rates of net H2 evolution with similar C2H2-reduction capabilities. Parallel experiments with the same cultivars nodulated by R. leguminosarum 300, an organism with no convincing uptake hydrogenase activity in any pea line, showed that 'JI1205' and 'Green Arrow' had a significantly lower relative efficiency (RE) of N2 fixation (1 − (H2 evolved in air/C2H2 reduced)) than the other five cultivars. Developmental differences among the pea lines prevented any conclusion about the advantages or disadvantages of uptake hydrogenase activity for plant growth, but in general, cultivars with high uptake hydrogenase activity and low net H2 evolution grew more slowly than those evolving large amounts of H2.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3