Author:
He Heming,Keech Peter G,Broczkowski Michael E,Noël James J,Shoesmith David W
Abstract
The influence of fission product doping on the structure, composition, and electrochemical reactivity of uranium dioxide has been studied using X-ray diffractometry (XRD), scanning electron microscopy (SEM/EDX), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Experiments were conducted on SIMFUEL specimens with simulated burn-ups (increasing doping levels) of 1.5, 3.0, and 6.0 atom%. As the dopant level increased, the lattice contracted, suggesting the dominant formation of dopant-oxygen vacancy clusters. The smaller than expected lattice contraction can be attributed to the segregation of Zr (one of eleven added dopants) to ABO3 perovskite-type phases that SEM/EDX shows also contain Ba, Ce, and possibly some U. Raman spectroscopy shows that doping leads to a loss of cubic symmetry, possibly associated with tetragonal distortions. Raman mapping confirms this loss of cubic symmetry and suggests the specimen is not uniformly doped. Electrochemical experiments show that these distortions lead to a decrease in the oxidative dissolution rate of the UO2 with increased doping density.Key words: UO2, X-ray diffraction, electrochemistry, Raman spectroscopy, nuclear fission products.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献