Characterization of the conformational changes in recombinant human metallothioneins using ESI-MS and molecular modeling

Author:

Chan Jayna,Huang Zuyun,Watt Ian,Kille Peter,Stillman Martin J

Abstract

Electrospray ionization mass spectrometry (ESI-MS) data and molecular modeling calculations were used to gain mechanistic, conformational, and domain-specific information from the acid-induced demetallation reactions of human metallothionein. The recombinant proteins studied were the single α- and β-rhMT-1a domains and the βα- and αβ-rhMT-1a two-domain species, based on the human metallothionein 1a sequence. Complete molecular models (MM3/MD) for all the fully metallated and demetallated species using a modified force field are reported for the first time. Basic residues that contribute to the ESI-MS charge states are identified from the molecular models. Demetallation took place under equilibrium conditions within a narrow pH range. For the two-domain proteins, these results support a demetallation mechanism involving the initial complete demetallation of one domain followed by the other for both βα-rhMT and αβ-rhMT. Based on the stability of the separate domains, the β domain is predicted to demetallate first in the two-domain rhMTs. Both the α domain and the β domain were observed to bind an excess of one Cd2+ ion. The metallated rhMT structures were shown to have very stable conformations, but only when fully metallated. Two or more conformations were observed at low pH in the ESI-MS data, which are interpreted as arising from the presence of structure, as opposed to a random coil, in the apo-rhMT. This is the first report of the existence of a structure in the two-domain metal-free apo-MT proteins. Only at extremely low pH does the structure open fully to give the highest charge distribution, which is associated with a random coil. Pre-existing structural features in the apo-MT would explain why the metallation reactions occur so rapidly.Key words: recombinant human metallothionein-1 (rhMT1), electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), molecular mechanics/molecular dynamics (MM3/MD).

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3