Trace determination of gadolinium by conductivity-based approach

Author:

Ananthanarayanan R.1,Sivaramakrishna M.1,Panigrahi B.S.2

Affiliation:

1. Innovative Sensors Section, Security and Innovative Sensors Division, Electronics and Instrumentation Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India.

2. Safety, Quality and Resource Management Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India.

Abstract

A conductivity-based technique is developed for the determination of Gd3+ in the heavy water moderators of pressurized heavy water reactors (PHWRs). The method involves monitoring extremely small shifts in conductivity, in the order of few nS/cm, due to the continuous addition of a suitable complexing agent to Gd3+ in aqueous medium. The resulting plot gives two distinct regions with vastly differing slopes. Two multidentate ligands, ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaaceticacid (DTPA), as complexing agents are compared. A high performing conductivity detector based on a new class of sensors called pulsating sensors that works entirely in the digital domain is deployed to monitor the conductivity shifts. Titration plots are studied in both H2O and D2O, and the observed difference between the plots in the two matrices is discussed in detail. Boron did not interfere in the analysis. The method was validated using the UV–vis spectrophotometric technique. The method is sensitive and rapid, as each analysis takes 3 min. The limit of detection in H2O and D2O are 1.27×10−7 mol/L and 5.1×10−7 mol/L, respectively. The precision in analysis lies between 1.9% and 5.3%. This method has important application in the nuclear industry for the routine analysis of gadolinium.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3